Skip to content

Setup

  1. Install the SonnyLabs library.
    pip install git+https://github.com/SonnyLabs/sonnylabs_py
    
  2. Install the python-dotenv library to load the necessary secrets from a .env file.
    pip install python-dotenv
    
  3. Create a .env file and set the API token and analysis id created earlier.
    SONNYLABS_API_TOKEN=[your_api_token]
    SONNYLABS_ANALYSIS_ID=[your_analysis_id]
    
  4. Initialize the SonnyLabs client in your code.
    from sonnylabs_py import SonnyLabsClient
    
    sonnylabs_client = SonnyLabsClient(
        base_url="https://sonnylabs-service.onrender.com",
        api_token=os.environ.get("SONNYLABS_API_TOKEN"),
        analysis_id=os.environ.get("SONNYLABS_ANALYSIS_ID")
    )
    
  5. Analyze the input and output text.
    # Analyze the user message before sending it to the LLM
    analysis_result = sonnylabs_client.analyze_text(user_message, scan_type="input")
    
    # Check for prompt injections
    prompt_injection = sonnylabs_client.get_prompt_injections(analysis_result)
    if prompt_injection and prompt_injection["score"] > 0.65:  # Threshold can be adjusted, recommended of over 0.65
        return "I detected potential prompt injection in your message. Please try again."
    
    # Check for PII on the input message
    input_pii_items = sonnylabs_client.get_pii(analysis_result)
    if input_pii_items:
        pii_types = [item["label"] for item in input_pii_items]
        return f"Personal information detected in the user message ({', '.join(pii_types)})."
    
    # If no security issues are found, process the message normally
    llm_response = [call to LLM here]
    
    # Scan the outgoing message for PII
    output_analysis = sonnylabs_client.analyze_text(llm_response, scan_type="output")
    
    # repeat the PII test on the LLM response 
    output_pii_items = sonnylabs_client.get_pii(output_analysis)
    if output_pii_items:
        pii_types = [item["label"] for item in output_pii_items]
        return f"Personal information detected in the LLM response ({', '.join(pii_types)})."